Polynomiography for Square Systems of Equations with Mann and Ishikawa Iterations
نویسنده
چکیده
In this paper we propose to replace the standard Picard iteration in the Newton–Raphson method by Mann and Ishikawa iterations. This iteration’s replacement influence the solution finding process that can be visualized as polynomiographs for the square systems of equations. Polynomiographs presented in the paper, in some sense, are generalization of Kalantari’s polynomiography from a single polynomial equation to the square systems of equations. They are coloured based on two colouring methods: basins of attractions with different colours for every real root and colouring dependent on the number of iterations. Possible application of the presented method can be addressed to computer graphics where aesthetic patterns can be used in e.g. texture generation, animations, tapestry design.
منابع مشابه
The Equivalence of Mann and Ishikawa Iterations Dealing with Ψ−uniformly Pseudocontractive Maps without Bounded Range
We prove that Mann and Ishikawa iterations are equivalent models dealing with ψ-uniformly pseudocontractive or d-weakly contractive maps without bounded range.
متن کاملDynamics of Mandelbrot Set with Transcendental Function
These days Mandelbrot set with transcendental function is an interesting area for mathematicians. New equations have been created for Mandelbrot set using trigonometric, logarithmic and exponential functions. Earlier, Ishikawa iteration has been applied to these equations and generate new fractals named as Relative Superior Mandelbrot Set with transcendental function. In this paper, the Mann it...
متن کاملThe Equivalence among the Modified Mann–ishikawa and Noor Iterations for Uniformly L–lipschitzian Mappings in Banach Spaces
In this paper, the equivalence of the convergence among Mann-Ishikawa and Noor iterations is obtained for uniformly L-Lipschitzian mappings in real Banach spaces. Our results extend and improve the corresponding results in Chang [3] and Ofoedu [4]. Mathematics subject classification (2010): 47H10, 47H09, 46B20..
متن کاملPicard Iteration Converges Faster than Mann Iteration for a Class of Quasi-contractive Operators
In the last three decades many papers have been published on the iterative approximation of fixed points for certain classes of operators, using the Mann and Ishikawa iteration methods, see [4], for a recent survey. These papers were motivated by the fact that, under weaker contractive type conditions, the Picard iteration (or the method of successive approximations), need not converge to the f...
متن کاملOn the Ishikawa iteration process in CAT(0) spaces
In this paper, several $Delta$ and strong convergence theorems are established for the Ishikawa iterations for nonexpansive mappings in the framework of CAT(0) spaces. Our results extend and improve the corresponding results
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016